翻訳と辞書
Words near each other
・ Derrick Wells
・ Derrick Westenra, 5th Baron Rossmore
・ Derrick White
・ Derrick White (baseball)
・ Derrick White (politician)
・ Derrick Williams
・ Derrick Williams (American football)
・ Derrick Williams (basketball)
・ Derrick Williams (footballer)
・ Derrick Wimbush
・ Derrick Witherspoon
・ Derrick Worsley
・ Derrick Wright
・ Derrick Z. Jackson
・ Derrick Zimmerman
Derrick's theorem
・ Derrick, Saint Vincent and the Grenadines
・ Derrickhand
・ Derricks
・ Derrida (film)
・ Derrida Today
・ Derrie Fakhoury
・ Derrie Nelson
・ Derriford Hospital
・ Derrike Cope
・ Derrike Cope Racing
・ Derriksite
・ Derrill Osborn
・ Derrill's Race
・ Derrima


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Derrick's theorem : ウィキペディア英語版
Derrick's theorem
Derrick's theorem is an argument due to a physicist G.H. Derrick
which shows that stationary localized solutions to a nonlinear wave equation
or nonlinear Klein–Gordon equation
in spatial dimensions three and higher are unstable.
==Original argument==
Derrick's paper,
which was considered an obstacle to
interpreting soliton-like solutions as particles,
contained the following physical argument
about non-existence of stable localized stationary solutions
to the nonlinear wave equation
:\nabla^2 \theta-\frac=\frac 1 2 f'(\theta),
\qquad
\theta(x,t)\in\R,\quad x\in\R^3,
,
now known under the name of Derrick's Theorem.
(Above, f(s) is a differentiable function with f'(0)=0.)
The energy of the time-independent solution \theta(x)\,
is given by
:
E=\int\left() \, d^3 x.

A necessary condition for the solution to be stable
is \delta^2 E\ge 0\,.
Suppose \theta(x)\, is a localized solution of
\delta E=0\,.
Define \theta_\lambda(x)=\theta(\lambda x)\, where
\lambda is an arbitrary constant, and write
I_1=\int(\nabla\theta)^2 d^3 x,
I_2=\int f(\theta) d^3 x.
Then
:
E_\lambda
=\int\left()d^3 x
=I_1/\lambda +I_2/\lambda^3.

Whence

(dE_\lambda/d\lambda)\vert_=-I_1-3 I_2=0\,,
and since I_1>0\,,
:
(d^2E_\lambda/d\lambda^2)\vert_=2 I_1+12 I_2=-2 I_1\,<0.

That is, \delta^2 E<0\, for a variation corresponding to
a uniform stretching of the ''particle''.
Hence the solution \theta(x)\, is unstable.
The above argument also works for x\in\R^n, n>3\,.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Derrick's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.